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ABSTRACT

by Experimental and theoretical results of a nuclear magnetic double
resonance interferometric study of a model AX spin system are presented.
Measurements of the characteristic relaxation times of off-diagonal density
matrix elements corresonding to magnetic-dipole-forbidden transitions are

;l? presented, and the use of such relaxation time constants to obtain information

% including cross-correlations of the fluctuating fields at the A and X nuclear

sites is discussed. Off-resonance effects produce large changes in the spectra,
and exploitation of these effects to indirectly measure the precise resonance

frequency of a spin with a small magnetogyric ratic is discussed.




| 68 INTRODUCTION

This paper presents a detailed analysis of the application of a
recently presented interferometric spectroscopic technique(l) to a model AX
spin system. The density matrix for such a coupled spin % system is a four-
by-four matrix, and when such a spin system in a strong magnetic field is
prepared in a nonequilibrium state, the subsequent relaxation of the system to
thermal equilibrium can be described by the decay of the elements of the density
matrix, where the diagonal elements relax with characteristic time constants,
called Tl's, and the off-diagonal elements relax with characteristic time constants
called T2'5(2’3). The determination of all of the Tl's requires a sequence of
experiments, and this has been discussed recently in detail for an AX system by

(4)

Mayne, Adlerman, and Grant' "/, while measurement of the off-diagonal relaxation
rates corresponding to magnetic-dipole-allowed transitions involves application
of a standard Carr-Purcell sequence. This leaves off-diagonal rates corresponding
to magnetic-dipole-forbidden transitions to be measured, and the present paper
presents a simple method for direct measurement of these remaining relaxation
rates. These rates are of particular interest since they can contain cross-
correlation information about the fluctuating fields at the sites of the coupled
A and X nuclei. In our review of the literature we have found no reports of
previous efforts to measure these relaxationrates in coupled spin % systems,
although we do want to call attention to an effort to detect such dipolar-
forbidden transitions by a multiple step excitation process, and that effort
involved a spin 5/2 nucleus, 27Al in A1203(5).

In addition, the analysis of off-resonance phase effects measured in the

spectra demonstrate that one can use such an interferometric scheme to measure

indirectly the resonance frequency of one of the coupled nuclei by observation of
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the spectra of only the second nucleus. The limiting precision of such an
indirect measurement will be shown to be equivalent to that of a direct mea-
surement. This could be of use when the magnetogyric ratios of the two

coupled spins differ by a large amount,and the direct observation of the nucleus
with the smaller magnetogyric ratio is made difficult by poor.signal-to-noise

conditions.
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II. DESCRIPTION AND EXPLANATION OF THE EXPERIMENT

A. General Description

lH)

The system we chose for this experiment was a conventional AX(13C -
system where both nuclei are spin %. The 13C (S spin) and 1y (I spin) were
in a liquid and were weakly coupled to each other via a scalar coupling of the
form J I . §. Since the sample was in a strong magnetic field, oriented along
the z-axis, only the secular part of the scalar interaction, J Iz Sz,contributed
to first order to the energy level spacings for this system. An appropriate
energy-level diagram is shown in Figure 1. The four levels are the eigenstates
of the Zeeman Hamiltonian corresponding to aa, aB, Ba, and BR, where the o and
g represent the spin "up" and "down" states with the z-component of angular
momentum equal to %fiand - % 7, and the first Greek letter refers to the I
spin while the second refers to the S spin. Note that the secular part of
the scalar interaction alters the energy levels slightly (exaggerated
considerably in Figure 1 for purposes of explanation), thus giving rise to
four inequivalent magnetic-dipole-allowed transitions. The 1H NMR spectrum
is a doublet corresonding to transitions 1-3 and 2-4 (single arrows), and the
13C spectrum is also a doublet corresponding to transitions 1-2and 3-4 (double
arrows). This doublet splitting is crucial for the present experiment since
it enables us to selectively irradiate certain transitions.

The experiment is shown schematically in Figure 2. First, we apply a
nonselective n/2 pulse (2 usec) to both the proton transitions. Then immediately
after the n/2 pulse we apply a low-power, selective pulse of length t to only
one of the 13C transitions. At a time AT after the original proton n/2 pulse

we apply another nonselective m pulse (4 psec) to both proton transitions, causing

a proton spin echo to be formed at time 2AT. The decay taken from time t = 0




(at the middle of the echo) is recorded for Fourier transformation (FT). The
five spectra shown in Figure 3 are such FT spectra for values of t = 0, 28, 56,
84, and 112 msec. The top spectrum, for which t = 0,corresponds to a conventional
spin echo pulsed NMR-FT proton spectrum. The sample was a solution of 91%
B¢-enriched sodium formate (NaCHO,) dissolved in D,0 with a small amount of
1H impurity. It is the 1H and the 13C in the enriched formate ions that comprise
our AX spin system and give rise to the symmetric proton doublet split by

J = 195 Hz. The small peak at the center of the doublet is due to the protons

12C. The large peak on the

in the 9% of the formate ions containing spinless
far left is due to the small amount of proton impurity in the DZO’ When
preparing the solution, no efforts were made to remove dissolved oxygen.

When looking at the spectra of Figure 3, two effects stand out. First,
we see that the amplitude of the formate doublet actually goes to zero, then
negative, back to zero, and finally positive again. Secondly, the amplitudes
of both members of the doublet do not remain the same. The former effect can
be explained completely by the spin dynamics of the system(l) while the latter
effect can be explained only by invoking relaxation phenomena. Therefore,
in order to understand the results of this experiment, we must theoretically
understand the spin dynamics of such a system first without, and later with,
relaxation effects taken into account.

B. Spin Dynamics Ignoring Off-Resonance and Relaxation Effects

We first examine the spin dynamics of our experiment, ignoring relaxation
effects as well as effects of the 13 selective pulse being "off-resonance."
There are, in fact, two such off-resonance effects to be ignored. The first
is the possibility of the selective r.f. radiation being at a slightly different

13

frequency from the “°C transition frequency. The second is the possibility
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that although the selective radiation is weak, it still is strong enough to

somewhat disturb the other 13C transition.
Before we apply the first pulse, we assume that our spin system is in

thermal equilibrium and that it can be described by the following 4 x 4 density

matrix:
(A o & @
8 8 0 o
Pequil TR e e o
foe 0 W

where the basis states are chosen to be the states 1, 2, 3, and 4 of Figure 1
(oxs aB, B, and BB, respectively). Note that the off-diagonal matrix elements
a:s zero, meaning there is no statistical phase coherence in the system and,

furthermore, in the high temperature approximation

A-B=C-D (2)

13C magnetizations are proportional to the

As usual, the observable 1y and
expectation values of the dimensionless spin operators, I and S. The
expectation values for I and S corresponding to the various observable
magnetizations are related to the density matrix elements as follows:

<I>13 = Re ryy » <L >4 = Re 0y

<113 = -Im 04 s <Iy>pq = -Im pyy

<I213 = %oy = p33) » <I>p = %(py, = Pyy)
(3)

Sy>12 = Re 0y ,

<Sy>34 = Re 0qy




<S >

y 12 = -Inl plz s <S >

y>34 = ~Im pqy

Sp212 = aleyy - epp) s <S734 = Nlegg 0yl

Because of the hermiticity of the density matrix, Repij = Repji and

;.' Impij = —Impji. The subscripts refer to particular levels between which
i | transitions give rise to observable magnetization. Because of the scalar split-
ting, we can distinguish between the transverse magnetization <Ix>13 and

_ <Ix>24’ etc. Each corresponds to one of the peaks of the doublet. However,
E  k since we do not know the sign of J, we do not know which magnetization
i corresponds to which peak. Fortunately, this is no serious drawback, and we
will say more about this point later in the paper.

Initially, since the off-diagonal elements are zero, there is no

transverse magnetization. The purpose of the proton m/2 is then to create

3 some transverse magnetization and phase coherence. After the w/2 pulse,

(assumed to be along the x-axis of the proton rotating frame), we have the
following matrix, making use of Equation (2) and ignoring effects due to the

finite width of the pulse:

k 5 15(A+C) 0 351 (A=C) 0
0 %(B+D) 0 Li(A-C)
p(0) = (4)
-%i(A-C) 0 L(A+C) 0
0 -%i(A-C) 0 1(B+D)
L 3
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The Hamiltonian acting on the system during the weak "~C pulse is

(for ft = 1):

He=wg I+ S, +J 1, S, +2u S cos ot (5) :
where we have chosen the pulse to be along the x-axis of the 13C rotating frame. )
The frequencies wy and w; are the Larmor frequencies of the 1H and 13C, w is |

the frequency of the 13C pulse, 2w1 is its amplitude, and J is the scalar

coupling in radians per second. We now analyze this by transforming to a doubly

rotating frame in which the Hamiltonian is static, by choosing to go to the

interaction frame of:

HO = (A)SZ + wp IZ (6)

where wp is the reference frequency of the phase detector we used to detect
the proton traverse magnetization. After transforming to this frame we have

the following Hamiltonian

Hl

3

+5%J SZ +J Iz SZ twy Sx

- (7)

I
&5
|

£

wg - w = 3

ignoring the counter-rotating r.f. component as usual. The density matrix

p is also taken to be in this same rotating frame, and for the sake of
simplicity we will not use any special notation to indicate this. Equation (4)
is still correct because we have assumed the lab frame and the interaction
frame to be coincident before the n/2 pulse, and we are justifiably assuming
the pulse is short enough to ignore effects during the pulse. The density

matrix evolves in time according to the Liouville equation:




G0 =1 [owH'] (8)

Using Equations (7) we have the following matrix for y':

- =
Liwl o 'Iz(J'A(D) 0 0 !
H' = (9)
0 0 -Yhw 30y
3 0 0 ‘/zwl =% Aw ]

The first kind of previously mentioned off-resonance effect was ignored when

13C radiation is being

we chose w - wg = % J, from Equations (7) because the
applied right "on" one of the resonances of the doublet. The second kind of

off-resonance effect is ignored by assuming that

This approximation means that the r.f. perturbation is so weak that it does
not mix levels 1 and 2, thus we set H'12 = H'21 = 0. However, levels 3 and 4
are still very strongly mixed by the 13C pulse.

Because this experiment involves observing only the I transverse magne-

tization, Equations (3) show that it is sufficient to calculate only 13
and py, (or P31 and p42), and thus we shall only worry about determining these

matrix elements. Using Equations (8) and (9) we can write the following

differential equations, and their initial conditions using Equation (4):




10
oy "~V i)+l oy * 1 8 P
prg = -1 (& + Mw) Py * 1% wy 3
Pog = 1 (& = Bu) pyg *+ 1% 0y Ppy
(11)

Pp3 = 1 (a0 = Bu) pp3 *+ T35 ) Py

py3 (0) = oy (0) =% i (A -C)

= 0

014 (0) = 923 (0) i

Solving these equations, we can determine the relevant matrix elements at

the end of the 13C pulse of length T
-i(%d + Aw)T
13 (t) =%i(A-C)e cos (% wlT)
(12)
(%) - Mw)T
Py (T) =% 1 (A-C)e cos (1 w;T)

The time evolution of the density matrix from the time t through the
m proton pulse at AT, which we take to be along the x-axis of the proton
rotating frame, and finally up to the middle of the echo at 2AT, is quite
straightforward to calculate, and we merely state the pertinent results:

(% + dw)t
P31 (2a7) = e °13 (1)

(13)

-i(l%d - Aw)T




Thus, from Equations (12) and (13), we have

P31 (2aT) = % i (A - C) cos (%wlT) e

pgp (28T) =% i (A - C) cos (a1

We can then use Equations (3) to compute the transverse proton magnetization of

the two peaks in the 1H doublet

<Iy (2AT)>13 <Iy (2AT)>24 = <Iy (2aT)> _y cos (ba0;7)
(15)

0

n

<IX (2AT)>13 <Ix (2AT)>24

where <Iy(2AT)>T=0 is just the magnitude of the transverse magnetization at 2aT
(the middle of the echo) for the case in which ¢t = 0 (no 13¢ irradiation). Thus,
we see that the effect of our selective 13C pulse is to cause the proton
magnetization to oscillate sinusoidally with a frequency of %wl. So by choosing
the length of T to correspond to a normal 2m pulse (wlr = 2m) we see that

effect is to multiply the amplitude of the proton doublet by cos (w) = -1.

This effect is the manifestation of the spinor character of the pseudo-two-
level system composed of levels 3 and 4, and this phenomenon has been discussed
in detail e]sewhere(l). The spectra in Figure 3 were taken for values of t
corresponding to values of Wt = 0, m, 2m, 3m, and 4w. Note that after a full
4 rotation the phase of the proton magnetization has come back to itself
again, which is further consistent with spinor behavior. Thus, we can see

that this idealized spin dynamical approach can at least explain the

oscillatory behavior in Figure 3. However, we need to understand quantitatively
the amplitudes of both members of the doublet, and this can only be done by

appealing to relaxation effects.
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By examining Equations (15), one notes that the magnetization linearly
oscillates rather than precesses. By looking at Equations (11) we see that
the matrix elements P13 and P14 are coupled, as well as Pog and Po3: Solving
for p;, would show that p,, «sin (%mlr); therefore, we see that p;5 and p,
are mutually oscillating and when one has a maximum, the other is zero,

and vice versa. According to the definition of the density matrix:

= L. €. (16)

where Ci and Cj are the complex quantum mechanical amplitudes for the system
to be in the states i and j, and the bar represents the mixed state which
results from taking a statistical ensemble average over the system. Thus,
we see that when P14 # 0, statistically our system is in a linear combination
of states 1 and 4. This, in turn, means that there is phase coherence or

"magnetization" corresponding to the forbidden transition 1-4. The reason

we do not see this magnetization is twofold. First of all, since it is magnetic-

dipole-forbidden, the process is second order and the probability of the
transition is correspondingly low. Secondly, the 1-4 transition frequency is

at about wy + w.s and we would have to make our phase detection reference

S

frequency . closer to this "double quantum" frequency in order to observe this

p
magnetization. Similarly, Pog and Po3 form a complementary pair of oscillating
variables, and p23f0 implies phase coherence between the levels 2 and 3, which
corresponds to a magnetic-dipole-forbidden "flip-flop" transition. In
anticipation of our later discussion of relaxation effects, we mention that if
the off-diagonal element P14 relaxes with a different rate than P13s We

would expect the amplitude of the 1-3 peak of the doublet to be different from
the prediction of Equation (15). This is because for t # 0, the system

has a probability of being in a linear combination of states 1 and 4 as well
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as 1 and 3. Thus, the ratio of <Iy(2AT)> to <Iy(2AT)>,r=0 could be either

smaller or larger than that predicted by Equation (15), depending on whether

or not the relaxation rate of P1g s faster or slower than the relaxation rate

of P13 Again, similar statements can be made about the rates of o4 and p,.
Thus, by attempting to quantitatively fit the amplitudes of the peaks of the
formate doublet for different values of 1, we can in fact determine the relaxation
rates of the density matrix elements p1g and Po3 In the next section we

pursue the effects of being "off-resonance" on the 13C frequency, while still
ignoring relaxation. We will see that these "off-resonance" effects cannot
explain the fact that the doublet does not remain symmetric.

C. Spin Dynamics Including Off-Resonance Effects but Ignoring Relaxation
Effects

As mentioned earlier, there are two important "off-resonance" effects
of the selective 13C pulse to be considered. These both fall naturally out
of the mathematics, if we choose the proper interaction frame. We start with
the same Hamiltonians as those in Equations (5) and (6); however, we will
choose our frequency of 13C irradiation, w, slightly differently. In this
case Equations (7) must be modified so that now after transformation to the

interaction frame, we have the following remaining Hamiltonian:

H' Awlz+(¥5J+6w)Sz+JIZSZ+wISX

Aw = wp = wp (17)

wg = W = LJ + Sw
Therefore Sw is just the difference in frequency between the applied 13C

radiation frequency and the frequency of the one member of the doublet we are

bttt
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intending to irradiate, and thus Sw measures an "off-resonance" effect.

Using Equations (17) we can now write the matrix representing H'

~ "
L(J+SwHiw) %ui 0 0
S -5(J+8w-Aw) 0 0
.= (18)
0 0 L(Sw-bw) %ui
0 0 L -L(Sw+iw)
L : .

We can examine the other type of 13C "off-resonance" effect by not

13

making the assumption of Equation (10). Therefore, we are saying our ~°C

radiation is substantial enough to somewhat disturb the other member of the
13C doublet. Thus, it is no longer necessary to assume that J >> %ml’ and
we are not so far "off-resonance" from the other 13¢ transition that it is
irrelevant. So proceeding with this in mind, we can use Equation (18) and

the Liouville Equation (8) to get the following set of coupled differential

equations:

fyg = =1 (ol * Sulyg + 1 %0 (pgy = ppg)

Prg = =1 (8 + tw + Sw)pys *+ 1 Yy (py3 = Ppy)
(19)

bpq = 1 (23 - Mlpyy * 1%y (0p3 - pyy)

p23 i (;i J - Aw t 60))023 + 1 Lﬂul (924 = 013)

The initial conditions for P13s P14s Pogs and ppg are identical to those in

Equations (11) . The solution of this set of equations is rather tedious, but

the important matrix elements can be show: to be:




-jAwt
013(1) = L(A-C) e {i(a cos Q.1 + c cos Q1) + (b sin Q.1 +d sin Q 1)}

: p24(r) = 4(A-C) e {i(a cos @,t + c cos Q_1) - (b sin Q,t +dsinQ1)}

where we have

2 4 4
st J J 2 2 J J 4
Q== {5) + G+ +u (5 +(5+8) +u
o V2
- (21)
3 3.2 3 2 34 2 2 4 2 5 5
- 2(-2') (7"‘ (Sw) + 2 (?) wl + 2 wl ('2‘+ 6(0) ] }
:'k where @ refers to the top sign and @_ refers to the bottom sign. Also, we
have the following values for a, b, ¢, and d in Equations (20):
X 9_2° (‘%‘)
E ) Ll SO
5 Q- q
2 2
@ - o
) £ & =t
8® —af
M (22) |
2 2
J 2 J
L @el - @) -0 )
. Q (Q2 92)
‘ . S S
q AP T
: @ *+u -9, ) 1
SEET e
g Q" -5

The following relations also hold true

a+c=1
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After the 13C pulse ends, the density matrix evolution is identical to that
in Equations(13). Then using Equations (13), (20), and (3) we compute the

proton transverse magnetization at 2AT to be
<Iy(2AT)>13 = <Iy(2AT)>24 = <Iy(2AT)>T=0 {(b sin Q.1 + d sin Q_1)

+ (a cos Q.1 + ¢ cos Q_1) cos (%-1) }

& (24)
1 <Ix(2AT)>13 = -<Ix(2AT)>24 = <Iy(2AT)>T=0 {(b sin Q,t + d sin Q_1)

?‘{ - (a cos @t + ¢ cos Q_t) sin (%-r)}
b )

where <Iy(2AT)>T=0 is again the amplitude of either of the peaks of the

doublet for the case where T = 0. Notice that the y-components of the
j magnetization of the proton doublet are identical, while the x-components :
merely differ by a sign. ;
Careful examination of Equations(24) tells us several important things. i

13C "off-resonance" effects we have

First of all, we see that neither of the
considered can possibly lead to the discrepancy in the amplitudes of the peaks
in the doublet of the spectra in Figure 3. Any such off-resonance effects
may alter the overall amplitudes of the peaks as well as introduce dispersion
' to the peaks, via the x-components, but the two peaks must remain mirror
images of each other in the spectrum. Because of this, we can then rule out

magnetic field inhomogeneity as a possible cause of that discrepancy.

Magnetic field inhomogeneity can be treated by summing a distribution of
peaks being off-resonance by different amounts. However, any distribution of
frequency would still lead to overall lineshapes for the two peaks which are

mirror images of each other, thus ruling this effect out as a possible

— — ST, it it e ., i o s




explanation. Also we can precisely determine 8w, and consequently, the

13

resonance frequency of the "“C line by observing the effects of dispersion

on the lineshape.

The full behavior of the functions in Equation (24) is quite involved.
However, we can look at certain limiting cases to separate the two kinds
of off-resonance effects. To try to understand the first type of off-resonance

13C radiation is slight "off" the intended frequency, we

effect where the
can take the 1imit of Equations(24) in the case where we assume the approximation

in Equation (10) to be valid. In this case Equations (24) become:
2
<1 (28T)> 15 = <1, (28T)55, = <1,(28T)> g {c0s (i /iy, + 6w’ ) cos(84D)

Sw
+ ————sin (% /w12 + 8w’ 1) sin (S

m12 +6w2

(25)

<Ix(2AT)>13 = -<Ix(2AT)>24 = <Iy(2AT)>T=0 {cos (% Anlz » 6w2 1) sin (§%I9

Sw P Y
- ————— sin (% w12 + 5(»2 1) cos (S‘%l)}
412 + 54,02

For the case where 8w << wys We see that Equations (25) are the same as those
of Equations (15) except that there is a phase error of §,1/2 introduced into
the peaks. Thus, both peaks have the same amount of dispersion mixed in, and

the sign of that dispersion is opposite for the two peaks. We note that we

13

can use this effect to our advantage in determining the position of the "°C

resonances. We could arbitrarily increase t until any 13C off-resonance, 8w,

no matter how small, would lead to noticeable phase cnanges in the proton spectrum;
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E ¢ however, an upper limit on 1, equal to approximately the inverse of the *“C

line width, effectively limits the resolution of &w to the 13C 1inewidth.

'.§ Thus, this indirect method of determining the position of the 13C resonance

{i seems to be superior, in this case, to other methods such as spin tickling(s),

13

b} whose resolution is ultimately limited by the proton rather than the ~~C

linewidth.
The second type of off-resonance effect, in which we take into account
2 the effect of weakly irradiating the other member of the 13C doublet, can be
3 k examined by assuming that
4

Sw =0 (26)

but not making the assumption of Equations(10). Taking the subsequent
E Y limiting case of Equations(24) expanded to second order in the parameter

X = wl/J, we have the following

<1 (28T)>y 3 = <I (28T)>,, = <1 (28T)> o {cos (awjr) [coS[(awyr) (sx)]
¢ 2 sin [(%r)(l + %xz)] sin (%r)]
2 ) s i) '« B J
x sin (at) sin [(FT)(1 +%x%)] cos (57) }
(27)
~<I,(28T)>5, = <1 (28T)> _4 {cos (yr) [sin[(ay7)(ax)]

<Ix(2AT)>13

o sin ((G0)(1 + 98)) cos (Fo) ]

- x sin (apr) sin (GO + w8)) sin ($0))

Thus, we see for the case of x << 1 (or wy << J) that Equations (27) are the
same as Equation (15) except that there is a phase error of(m11/2)'(x/2)

introduced into the peaks. Thus, again both peaks have equal and opposite
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amounts of dispersion mixed in. If we intend to use the first type of off-

resonance effect to find the 13

C resonance position by observing the amount
of dispersion mixed in, we must take into account also this other phase error
due to the second type of off-resonance effect. This does not hurt our resolution

of the 13

C resonant frequency, but it does mean that we must subtract off this
second effect. Although we do not show the results here, computer calculations
of Equations (24) indicate that if both types of off-resonance effects are
present simultaneously and they are both small, their phase errors will, in
fact, merely add linearly rather than combine in some more complicated manner.

Thus, it seems that the detailed spin dynamics of the experiment, taking
off-resonance effects into account, seem to provide the necessary insight to
use this technique as a very accurate, indirect method of determining the 13
resonant frequency. However, only in the next section, where we investigate
the effects of relaxation, can we quantitatively fit the measured peak

amplitude to theoretical calculations.

D. Spin Dynamics Including Relaxation Effects but Ignoring Off-Resonance
Effects

In order to make the relaxation calculation more tractable and more
easily interpretable, we have chosen to ignore both types of 13C off-
resonance effects in this section. According to Redfield's theory of re]axation(z).
we can include relaxation effects by assuming that we have a modified

Liouville equation:

3 ' 1
%f opn = 1losH 1 = T;; Pmn (m #n) (28)

Since the relaxation times are long compared to 1/J, we can assume that the

damping term in Equation (28) for off-digonal matrix elements depends only
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on the same matrix element appearing on the left-hand side of Equation (28).
Each different matrix element, Pmn’ however, is assigned its own rate constant,
1/Tmn. This condition of Tmn >> 1/J merely means that we do,in fact, have

; a well-resolved proton doublet to begin with. Furthermore, the requirement

is that the real relaxation time Tmn >> 1/J and not the apparent Tmn* >> 1/4J
where Tmn* is the decay constant taking magnetic field inhomogeneity into
account. Thus, this criterion is easily satisfied in our experiment.

Next, by using Equations (28) and also Equations (11), which are the ones

appropriate for ignoring off-resonance effects, we can determine the following

'k differential equations:
. % . 1
Gye t =LleR t saloagt U8 g =Y. O
' By E 1
' p14 ) (15 J + Aw)p14 + 1 !iul p13 - ﬁ4 pl4
| (29)
i e L 3
Pog = 1 (% J - Aw)024 3 %"1 P23 ~ T24 Pog
]
i 5 ! A
é pg3 = 1 (20~ awlogy * 1 %y 0y Tyq P23

Again, the initial conditions are the same as in Equations (11). The relevant
. matrix elements can then be determined to be

’ 1 1
: -i(taw)t Ely— )t
: 013(T) = Li(A-C) e g 2 e 13 T14

4 1
p S 15
x {cos[k Aﬁlz -(TJ;.- Tl_)z q+ 14 '13 :
T T g e T
1 N3 Tye

2
sin [%Aﬁlé - (T%; - Tl—) 1]}

=
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A
l ;
: 1 1
i(ad-bu)T (= + <)t
;
o)
i 3
£ x {cos[% .412 -(TL - -T-l—)zr] + 23 24
' 24 '23 P N
oy () - ( - _)
B 1 0 T23

E 24

L 'l . 2 1 1.2
Fi sin [% ,4 - (77— - =) 11}
I | T24 T23

bk As in the other cases, the Equations (13) for the evolution of the density

13

matrix after the "°C pulse are still applicable. Then by using Equations

- am—

(13), (30), and (3), we get

L
. 1 1
i 3 late. o bl 2
: <I,(28T)>)5 = <1 (28T)> g e 2(T14 T13)T fcos s “61 g (T%Z__ T%E)Z -
1 1
ATRAIT
, + 13 SRk “12 i (Tl‘ R Tl'°2 1)
P T 14 N3
P b 17 T )
¥ 13 (31)
1 1
= “L(=— - =— 2
| <L (28T)>py = <1 (28T)> ;e a(T23 T24)r — 'ﬁ; ) (Tig__ Ti;)z 0
(Tl_._ 1,
; T
i /M Y (B R W
Bl R 23 24
g Do e e
} 23 '24
;
a <1, (28T)>5 = <1, (28T)>p4 = 0

where we note that <Iy(2AT)>T=0 now implicitly includes an overall relaxation

term exp (-2AT/T13).

i
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After examination of Equations (31), we see that the effects of the
relaxation are three-fold. First, we see that there is an exponential damping
or increasing of the amplitude of the peak, depending on the difference of
the two relaxation rates. For the caseof’<Iy(2AT)>13 we see that the crucial
quantity is (1/T14 - 1/T13). If the two time constants T;, and T, are
equal, then we see no effects and the magnetization is the
same as that in Equation (15). If, however Tig < T3> then there will be a
damping of the amplitude; and if T13 < T14, then there will be an increase
in the peak's amplitude. The second effect of the relaxation is to alter
s the oscillation frequency; however, this effect is second order in the
parameter R13 = (1/T14 - 1/T13)/w1. The third effect of the relaxation is
to introduce a first order (in R13) term which oscillates 1ike sine rather

! than cosine. The main effect it has is to uniformly translate the zero-
crossings of the amplitudes as it effectively introduces an overall phase
' error into the oscillating term. This phase of the oscillation is not to be
P confused with the dispersion- related phase discussed extensively in Section II C
of this paper. Although we have not calculated in detail the effects of

1
1 relaxation and

C off-resonance effects simultaneously, we feel that we
can safely predict the results for small off-resonance parameters by a linear
combination of the dispersion phase errors predicted by Equations (25) and
(27) and the magnetizationpredicted by Equations (31).

Fitting the measured amplitude of the peak to the theoretical Equations (31)
can yield a value for R13, and knowing wy and T13. this will
i then yield the relaxation time T14. A similar procedure for the other peak

will subsequently yield T23 if we know T24. It seems reasonable to assume that

2'1 5 ]

Toa = Tou » (1

24
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where this just means that the relaxation time constants of the two members of
the proton doublet (corresponding to the allowed transitions 1-3 and 2-4) are
the same. Furthermore, since these are just the conventional proton T2's
of such a system, we call these times (TZ)I‘

In the next section we quantitatively compare theory and experiment
and determine values for T14 and T23. We also Took briefly at some data

which show off-resonance effects discussed in Section II C.

III. PRESENTATION AND DISCUSSION OF RESULTS

A. Relaxation Data

In this section we first compare the spin dynamical theory including

relaxation, of Section II D, to experimental data. First, we need to rewrite

Equations (31) in a slightly more usable form

<Iy(2AT)>13

R
13
e ®R13 (cos (10 ¢€-R132) P o /ﬁ-R132)}
i

=0 _R

R
24 Y

—————— = 7R {cos (40 /1-Ry,%) + ——— sin(s® A-R,,%))

<1 (@aT)> g A-Ry,?

24

<Iy(2AT)>24

where we have now normalized the amplitude of each peak to the value for the

case of t = 0. The parameters in Equations (33) have the following values

1 1 1
q ('T"i: b (T_Z')I)

ik e
e (_._ - (_
T Tor
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The assumption of Equation (32) has been used to justify the substitutions
for T13 and T24 in Equations (34) above.

In Figure 4 we have plotted experimental data and the theoretical Equations
(33) for various values of the R parameters. Figure 4A shows the experimentally
measured amplitude of the peak of the proton formate doublet which was not
attenuated for long valuesof t (the right-most member of the doublet in
Figure 3). Figure 4B shows the experimental amplitudes of the other peak of
the doublet which was strongly attenuated for long values of t (the left-most
member of the doublet in Figure 3). In both Figures 4A and B the ratios of
the amplitudes of the doublet peaks to the amplitude for the special case of
T = 0 were plotted in order to facilitate direct comparison with Equations (33).
Amplitudes were determined from areas of the experimental peaks, and
norma lization was accomplished by comparison of the 1H impurity peak.
The triangles indicate data points for experiments where the echo time, 2AT,
was chosen to be 90 msec while the circles indicate data points for experiments
where 2AT was chosen to be 280 msec. In all experiments, the same value for

the strength of the 13

C r.f. pulse, wys Was used.

The question now arises as to which of the theoretical Equations (33)
corresponds to which of the doublet peaks. The ambiguity arises because we
do not know the absolute sign of J; hence, we cannot be sure which of the
proton transitions, 1-3 or 2-4, is the lower frequency transition. We have
the possibilities of irradiating either the high or low frequency member

13C doublet, and the system might recct with attenuation of either

of the
the high or low frequency member of the proton doublet. Analysis reveals that
we can unambiguously assign T14 and T23, but we cannot determine the sign of

J. Let us consider the four cases of irradiating the high 13C (his) or
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1

Tow 13C (105) transitions, and observing attenuation of the high °H (hil)

or low lH (101) transitions. It turns out that hi. - hiI and 10S - 10I both

S

predict that T23 < (TZ)I’ while hi. - ]oI and lo. - hiI predict that

S S

T14 < (TZ)I' In our case, we experimentally observed only hi_ - hi; and

S
los - 101 so we know that T23 < (TZ)I'

By the discussion of the preceding paragraph, we now can determine
values for R from the data in Figure 4 without worrying about the subscripts
on R. Figure 4A has two theoretical curves (Equation (33)) drawn for R = 0
(solid line) and R = 0.02 (dashed line). From these curves we determine that
R= .01 + .01. The value for R and the error 1limits are somewhat subjectively
determined by noting that the curves for R = 0 and for R = .02 seem to nicely
bound the scatter in the data. In Figure 4B we have drawn theoretical curves
for R = .20 (solid line), R = .18 (dashed line), and R = .22 (dotted line).
The curve for R = .20 fits the experimental data best, and the curves for
R = .18 and R = .22 bound the scatter in the data rather well. So from
this we conclude that R = .20 + .02 for Figure 4B.

We determined Wy from the zero crossing of the experimental data in
Figure 4A to be wj/2m = 17.9 Hz. This procedure is convenient since, for this
unattenuated peak, relaxation effects are small and Equations (33) become
equivalent to Equations(15). Another option to determine the value for wy
would be to measure the length of a 2y pulse by actually observing the
13C magnetization. By conventional methods we measured (T2)I to be 160 msec.
Thus, from Figure 4A the value of R = .01 + .01 means that T14 = 140 + 20 msec.
The value of R = .20 + .02 from Figure 4B means that T23 = 35 + 3 msec.
Although not crucial to the experiment, for general information we measured

13

. (this is the "°C T,) to be 480 msec, the (TI)I (normal proton Tl)
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to be 4.2 sec, and (Tl)s (normal 13

C Tl) to be 8.7 sec. All of these times
are shorter than would be expected in a system purged of dissolved oxygen.
Using this method, it is now possible to directly measure all of the
relaxation rates pertaining to the off-diagonal density matrix elements of
such a system. In our case the only four unique non-zero rates have the time

constants (Tp)q, (Tp)gs Tyy» and T,o. The full Redfield theory(?) says that

the general relaxation of the density matrix is of the form

d !
dat Pmn ~ ° 23 Ronij Pij (35)
where the R is a super-matrix. Thus, the relaxationof a particular

mnij
element of the density matrix in general depends on the values of other elements
as well. However, according to our assumption of Equation (28), the relaxation
of each off-diagonal element depends only on its own value. This is not the
case for diagonal elements even if we still assume that the relaxation times

are long compared to 1/J. A recent paper of Mayne, et al.(4 ) shows a very
pretty experiment, performed on the same chemical system we used, which measures

all of the elements of the super-relaxation rate matrix, R » which pertain

mnij
to diagonal elements of the density matrix. So, by performing experiments

like these as well as the experiments described here, it is possible to

map out the values of the entire 16 x 16 relaxation matrix for this AX system.
Generalized versions of this phase interferometric spin spectroscopic technique

are easy to generate for more complicated systems such as AX2, etc.

If the decay times of the peaks had been long compared to the length of

our 13C pulse (as might have been the case had we removed dissolved oxygen), j

there would have been several alternatives. First of all, we could have just

increased the time t until relaxation effects were noticeable. Care should




be used in choosing the proper wy because if during the time t the value

of cos (wlT/Z) undergoes many cycles, then the inhomogeneity of the 13

C r.1.
magnetic field (wl/ys) could cause the proton magnetization to dephase, thus
giving rise to an effective decay rate which could interfere with the measurement
of the relaxation decay. This will not be a problem if the following criterion

is maintained

— <« R (36)

where R is the dimensionless parameter of Equations(34). The symbol Awy

13C r.f. perturbation across the sample, so

stands for the variation of the
A“l/wl is the fractional r.f. inhomogeneity, determined by the geometry of

the r.f. coil. A second alternative to the initial problem would be to

stop the 13C pulse at a time when the proton magnetization has completely
disappeared. This would correspond to values of g = wyT =, 3w, 5m, etc.

At that time the state of the system would have P14 and Pp3 @S the only non-zero
off-diagonal matrix elements, and the system would relax with the corresponding
times T14 and T23. After waiting some appropriately long time one would
“retrieve" the proton magnetization by the applicationof another selective

13C pulse. Measurement of the magnetization would then yield the desired
relaxation times. A method similar to this last suggestion was used in a
quadrupolar system by Hatanaka, et a].(s) to measure off-diagonal forbidden
transition relaxation rates for spin 5/2 nuclei,27A1 in A1203. 0f these two

methods the former should work in all cases, while the later is applicable

only when

3> (£ ‘(T% ) for i,j = 1,4 and 2,3 (37)
ij 2/1

R T ng e v —
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B. Qualitative Off-Resonance Data

In this section we very briefly present two spectra showing some of the

off-resonance effects of the spin dynamics described in Section II, C.

13¢ radiation is

Figure 5 contains spectra taken for wyT = 2m in which the
slightly off-resonance. Both types of off-resonance effects contribute to these

spectra. For the value of wy stated earlier, we have the important parameter

13

of Equation (27), x = .092. This means that if the ~°C offset frequency,

Sw» iS zero, there will be an apparent phase error of about 8° due to the

second type of off-resonance effect. The first kind of off-resonance effect

13

then predicts that irradiating the "“C line at Sw/2m = .8 Hz should produce

spectra with no dispersion present. This can be estimated by setting the

apparent phase errors from Equations (25) and (27) equal to each other to get
2

e B8

60) = 2\] (38)

13

Thus, we speak of this "“C jrradiation frequency as being the apparent

resonance frequency.

Figures 5A and B show spectra taken for the values of the
irradiation frequency above and below, respectively, the apparent resonance
frequency. These spectra were taken 10 Hz apart, so we would expect to see
a phase difference of % Swr equal to about 101°. It is difficult to determine

from the spectra exactly what the phase errors are because this was not done

with a high resolution spectrometer, and thus the dispersion phase signals can

overlap somewhat. However, we can still estimate that Figure 5A is about 4 Hz
above the apparent resonance frequency and Figure 5B is about 6 Hz below,
corresponding to phase errors of +40° and -60°. Very accurate measurements
could, in principle, be made to very precisely determine the apparent 13C

resonance frequency.
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IV.  IMPLICATIONS OF THE EXPERIMENT

We discuss here twoimportant applications of the experiment described
in the foregoing sections. One of these is the precise determination of

1 1H spectrum,

C resonance frequencies through the observation of changes in the
as described in Section II, C. Since the sensitivity of the technique does

not depend on the magnetogyric ratio, Ygo of the S spins it potentially is a
highly desirable method for the detection of low-y spin resonances. The only
condition for being able to perform the experiment is that the doublet of the
S-spectrum is well resolved,and under the reasonable assumption that J as well
as the linewidth (due to field inhomogeneity) is proportional to vg, it is

clear that the magnitude of Ys does not impose any limitation on the
applicability of the method. The other main application is the measurement

of T,'s associated with forbidden transitions, in our case T,5 and T,,.

Although we will not give an extensive treatment of the various relaxation
mechanisms that possibly might prevail, we wish to illustrate the particular
significance of these relaxation times by the following very simple model.
Suppose that the spin relaxation of an AX system is caused by randomly fluctu-
ating local fields AHI and AHs at the sites of the nuclei I and S, respectively,
and let us assume that these fields are parallel to the external Zeeman field.
Defining Awl(t) =Yg AHK(t) and Aws(t) * Ye AHS(t), we then have for the

fluctuating random Hamiltonian:
H'(t) = AwI(t) I, Mwg(t) S, (39)

Since only diagonal elements are involved in H'(t), the relaxation rates of

(3)

the various off-diagonal density matrix elements are given by'"!
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2 . (40)

1
- = (Hl - H!
Tmn n m

where the bar denotes the ensemble average and T is the correlation time

of the fluctuations. Hence, we find for this simple model

(%—)I = Tl_"'Tl—': AwIZ T
2 5 S
| NEWRTE S TSRO
(TE)S ol it T
(41)
i T 2 2
T2—3- = (AwI + Aws - 2AwIAws) T
2 2
T-I: = (Au)I + fug” t 2AmIAwS) T

While the normal relaxation times depend on Awlz and Awsz, which measure the
strengths of the fluctuating fields, the times T23 and T14 are in addition
related to bwy Awg- Thus, measurement of the T2's of forbidden transitions
provides information about the cross-correlation between the two local fields.
One should be aware that this result strongly depends on the particular
relaxation mechanism chosen. For instance, fluctuating fields perperdicular
to the Zeemen field with very short correlation times give rise to uniform

relaxation rates for all the off-diagonal elements of the density matrix,

———

2 (42)

)y s - 72_3 3 T—iz " ooy + dug’) T




SR e e o b oo

Nevertheless, we feel that the physical picture emerging from the first
examp]e will have general implications, and that knowledge of relaxation times
like T23 and T14 will be of help in the determination of the detailed nature
of molecular motions, such as anisotropic tumbling.

Furthermore, the phase interferometric technique is in general
applicable whenever we have a system with two or more inequivalent transitions
having one quantum mechanical level in common. It can, for.instance, be
applied to systems consisting of two coupled nuclear spins, a nucleus and a

free electron,or a nucleus with quadrupolar interaction.

ACKNOWLEDGMENTS

This effort was supported by the Office of Naval Research. One of us,

A. J. Vega, received partial support from NASA (NSG-7275). . .

+ On leave from the Weizmann Institute of Science, Rehovot, Israel.




v
o

32
REFERENCES
1. M. E. Stoll, A. J. Vega, and R. W. Vaughan, submitted to Physical Review A.
2. A. G. Redfield, IBM J. Res. Develop. 1, 19 (1957); "Advances in Magnetic
Resonance"(ed. ty J. S. Waugh), Vol. 1, p. 1, Academic Press, New York, 1965.
3. A. Abraham, "Principles of Nuclear Magnetism" Chapter 8, Oxford,
Clarendon,1961.
4. C. L. Mayne, D. W. Alderman, and D. M. Grant, J. Chem. Phys. 63, 2514 (1975).
5. H.Hatanaka,T. Terao, and T. Hashi, J. Phys. Soc. Japan 39, 835 (1975).
6. R. Freeman and W. A. Anderson, J. Chem. Phys. 37, 2053 (1962).



FIGURE CAPTIONS

33

Figure 1.

Figure 2.

Figure 3.

Energy level diagram for an AX spin system. The o and g represent

the two eigenstates spin up and spin down of the spin % particle.

1

The first Greek letter represents the state of the “H spin and the

1

second represents the state of the 13C spin, so that two "H transitions

130 transitions are shown

are shown with single arrows, while the two
with double arrows. The numbers 1, 2, 3, 4 are used to refer to

the various energy levels or to the eigenstates to which they
correspond. The relative Zeeman energies for Iy (56.4 MHz) and

13 (14.2 Mhz) have been drawn to scale, but the effects of the weak

coupling have been greatly exaggerated for emphasis.

Radio frequency pulse sequence used. A m/2 pulse is applied to both

1H transitions. Then a selective pulse of length ¢ is applied to only

one of the 13C transitions. A m pulse is then applied to both 1H
transitions at a time AT after the /2 pulse, which creates a spin i
echo at a time 2AT after the /2 pulse. The signal is recored

from 2AT(t = 0), defined to be the middle of the echo for Fourier

transformation. ]

Proton phase interferometric spectra for different values of t.

The doublet split by 195 Hz is due to the 'H coupled to the 13C in
13

those formate ions containing “°C. The small peak at the center of the
doublet is due to the 1H in the formate ions containing spinless 126,
while the large peak on the far left is due to the small amount of

1H impurity in the solvent. The five spectra are for values of

1t =0, 28, 56, 84, and 112 msec, corresponding to values of

oyt = 0°, 180°, 360°, 540°, and 720°.




Figure 4. Comparison of experimental and theoretical values of the amplitudes of
the peaks of the proton doublet vs. the value of ¢ = wqT- The
amplitudes of the peaks are plotted on the vertical axis, normalized to
the peak amplitude for the special case of t = 0. The value of Wyt
( in degrees) is plotted on the horizontal axis. The triangles indicate
experimental data for which the echo time (2AT) was 90 msec, and the

¢ circles are for 2AT = 280 msec. In all cases the same value of

wy = 112 rad/sec was used.
i A. This solid Tine corresponds to the theory for the value of the
5 parameter R = 0. The dashed line represents the theory for
R = .02,
B. The solid line represents theory for R = .20, the dashed line is

} R = .18, and the dotted 1ine is R = .22.

Figure 5. Proton phase interferometric spectra (for 6 = WyT = 360°) showing
13C off-resonance effects.
e A. This spectrum was taken with the 13C irradiation about 4 Hz

13C resonance, thus the doublet shows a phase

above the apparent
' error of about + 40°.
B. This spectrum was taken with the l3C irradiation about 6 Hz below
: the apparent 13C resonance, thus the doublet shows a phase error

of about - 60°.
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